3.856 \(\int \frac{(b \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac{9}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=110 \[ \frac{A b \sin (c+d x) \sqrt{b \cos (c+d x)}}{2 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{A b \sqrt{b \cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 d \sqrt{\cos (c+d x)}}+\frac{b B \sin (c+d x) \sqrt{b \cos (c+d x)}}{d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(A*b*ArcTanh[Sin[c + d*x]]*Sqrt[b*Cos[c + d*x]])/(2*d*Sqrt[Cos[c + d*x]]) + (A*b*Sqrt[b*Cos[c + d*x]]*Sin[c +
d*x])/(2*d*Cos[c + d*x]^(5/2)) + (b*B*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0551959, antiderivative size = 110, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {17, 2748, 3768, 3770, 3767, 8} \[ \frac{A b \sin (c+d x) \sqrt{b \cos (c+d x)}}{2 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{A b \sqrt{b \cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 d \sqrt{\cos (c+d x)}}+\frac{b B \sin (c+d x) \sqrt{b \cos (c+d x)}}{d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(9/2),x]

[Out]

(A*b*ArcTanh[Sin[c + d*x]]*Sqrt[b*Cos[c + d*x]])/(2*d*Sqrt[Cos[c + d*x]]) + (A*b*Sqrt[b*Cos[c + d*x]]*Sin[c +
d*x])/(2*d*Cos[c + d*x]^(5/2)) + (b*B*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2))

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(a^(m + 1/2)*b^(n - 1/2)*Sqrt[b*v])/Sqrt[a*v]
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{(b \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac{9}{2}}(c+d x)} \, dx &=\frac{\left (b \sqrt{b \cos (c+d x)}\right ) \int (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx}{\sqrt{\cos (c+d x)}}\\ &=\frac{\left (A b \sqrt{b \cos (c+d x)}\right ) \int \sec ^3(c+d x) \, dx}{\sqrt{\cos (c+d x)}}+\frac{\left (b B \sqrt{b \cos (c+d x)}\right ) \int \sec ^2(c+d x) \, dx}{\sqrt{\cos (c+d x)}}\\ &=\frac{A b \sqrt{b \cos (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{\left (A b \sqrt{b \cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{2 \sqrt{\cos (c+d x)}}-\frac{\left (b B \sqrt{b \cos (c+d x)}\right ) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d \sqrt{\cos (c+d x)}}\\ &=\frac{A b \tanh ^{-1}(\sin (c+d x)) \sqrt{b \cos (c+d x)}}{2 d \sqrt{\cos (c+d x)}}+\frac{A b \sqrt{b \cos (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{b B \sqrt{b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x)}\\ \end{align*}

Mathematica [A]  time = 0.0891647, size = 65, normalized size = 0.59 \[ \frac{(b \cos (c+d x))^{3/2} \left (\sin (c+d x) (A+2 B \cos (c+d x))+A \cos ^2(c+d x) \tanh ^{-1}(\sin (c+d x))\right )}{2 d \cos ^{\frac{7}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[((b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(9/2),x]

[Out]

((b*Cos[c + d*x])^(3/2)*(A*ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^2 + (A + 2*B*Cos[c + d*x])*Sin[c + d*x]))/(2*d*C
os[c + d*x]^(7/2))

________________________________________________________________________________________

Maple [A]  time = 0.217, size = 121, normalized size = 1.1 \begin{align*} -{\frac{1}{2\,d} \left ( A\ln \left ( -{\frac{-1+\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}-A\ln \left ({\frac{1-\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}-2\,B\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) -A\sin \left ( dx+c \right ) \right ) \left ( b\cos \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}} \left ( \cos \left ( dx+c \right ) \right ) ^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x)

[Out]

-1/2/d*(A*ln(-(-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))*cos(d*x+c)^2-A*ln((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))*c
os(d*x+c)^2-2*B*sin(d*x+c)*cos(d*x+c)-A*sin(d*x+c))*(b*cos(d*x+c))^(3/2)/cos(d*x+c)^(7/2)

________________________________________________________________________________________

Maxima [B]  time = 2.09507, size = 1008, normalized size = 9.16 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

1/4*(8*B*b^(3/2)*sin(2*d*x + 2*c)/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) - (4*(b*s
in(4*d*x + 4*c) + 2*b*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 4*(b*sin(4*d*x
+ 4*c) + 2*b*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (b*cos(4*d*x + 4*c)^2 +
4*b*cos(2*d*x + 2*c)^2 + b*sin(4*d*x + 4*c)^2 + 4*b*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*b*sin(2*d*x + 2*c)^2
 + 2*(2*b*cos(2*d*x + 2*c) + b)*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)*log(cos(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/2*arctan2(sin(2*d
*x + 2*c), cos(2*d*x + 2*c))) + 1) + (b*cos(4*d*x + 4*c)^2 + 4*b*cos(2*d*x + 2*c)^2 + b*sin(4*d*x + 4*c)^2 + 4
*b*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*b*sin(2*d*x + 2*c)^2 + 2*(2*b*cos(2*d*x + 2*c) + b)*cos(4*d*x + 4*c)
+ 4*b*cos(2*d*x + 2*c) + b)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*(b*cos(4*d
*x + 4*c) + 2*b*cos(2*d*x + 2*c) + b)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*(b*cos(4*d*x +
4*c) + 2*b*cos(2*d*x + 2*c) + b)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*A*sqrt(b)/(2*(2*cos(2*d
*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x
 + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1))/d

________________________________________________________________________________________

Fricas [A]  time = 1.63206, size = 640, normalized size = 5.82 \begin{align*} \left [\frac{A b^{\frac{3}{2}} \cos \left (d x + c\right )^{3} \log \left (-\frac{b \cos \left (d x + c\right )^{3} - 2 \, \sqrt{b \cos \left (d x + c\right )} \sqrt{b} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \,{\left (2 \, B b \cos \left (d x + c\right ) + A b\right )} \sqrt{b \cos \left (d x + c\right )} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{3}}, -\frac{A \sqrt{-b} b \arctan \left (\frac{\sqrt{b \cos \left (d x + c\right )} \sqrt{-b} \sin \left (d x + c\right )}{b \sqrt{\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{3} -{\left (2 \, B b \cos \left (d x + c\right ) + A b\right )} \sqrt{b \cos \left (d x + c\right )} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, d \cos \left (d x + c\right )^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

[1/4*(A*b^(3/2)*cos(d*x + c)^3*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*sin(
d*x + c) - 2*b*cos(d*x + c))/cos(d*x + c)^3) + 2*(2*B*b*cos(d*x + c) + A*b)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x
+ c))*sin(d*x + c))/(d*cos(d*x + c)^3), -1/2*(A*sqrt(-b)*b*arctan(sqrt(b*cos(d*x + c))*sqrt(-b)*sin(d*x + c)/(
b*sqrt(cos(d*x + c))))*cos(d*x + c)^3 - (2*B*b*cos(d*x + c) + A*b)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin
(d*x + c))/(d*cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac{3}{2}}}{\cos \left (d x + c\right )^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)/cos(d*x + c)^(9/2), x)